КОНТРОЛЬ ПСИХОФИЗИОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ ДЕТЕЙ, ЗАНИМАЮЩИХСЯ СУМО

Ложечка М. В.

Муниципальное бюджетное учреждение дополнительного образования «Центр детского творчества «МЕТАЛЛУРГ» городского округа Самара

Ложечка М. В. Контроль психофизиологических Аннотация: показателей детей занимающихся сумо. В данной статье представлены и охарактеризованы режимы определения психофизиологических показателей. Приведены результаты исследования показателей индивидуально типологических свойств высшей нервной деятельности и сенсомоторных функций детей младшего школьного возраста, занимающихся сумо. Выявлено, что благодаря системе оценки психофизиологических качеств с помощью программы «Психодиагностика», можно контролировать и прослеживать динамику изменения в организме ребенка индивидуально - типологических свойств нервной системы и сенсомоторных функций занимающегося сумо.

Ключевые слова: сумо, контроль, психофизиология, дети.

Актуальность. Одним из приоритетных направлений государственной политики и развития современного общества является воспитание здорового, образованного, подготовленного для дальнейшей трудовой деятельности молодого поколения. В то же время, борьба сумо завоевывает все большую популярность среди детей и молодежи. С каждым годом интерес к этому виду спорта только растет [2, 5, 15, 17].

В мире увеличивается количество федераций. В России все больше спортсменов принимают участие в различных соревнованиях по сумо. В системе дополнительного образования открываются физкультурно-спортивные направления, связанные с этим видом спорта. В клубах по месту жительства появляются занятия по сумо. Наряду с этим, этот вид спорта с научной точки зрения мало изучен [15, 16,17, 20]. Ощущается дефицит научно-методической литературы.

Общеизвестно, что спортивная тренировка юных спортсменов имеет ряд методических и организационных особенностей. Понимание этих особенностей позволяет тренеру более результативно управлять тренировочным процессом и планировать его. Следовательно, каждое занятие должно иметь свою меру предельно допустимой нагрузки. Таким образом, любая нагрузка должна правильно определяться и зависеть от возраста и степени подготовленности занимающегося. Именно поэтому возрастает роль грамотного отношения тренера к юному спортсмену, которое выражается в грамотном использовании объема, интенсивности и характера нагрузок в тренировочном процессе.

В последние годы существенно активизировались исследования в области спорта. Огромный эмпирический и теоретический материал, накопленный в

области методики подготовки спортсменов, спортивной педагогики и психологии, морфологии и биохимии, физиологии и биомеханики. Материалы анализа последних исследований и публикаций свидетельствуют о том, что изучение вопросов, связанных с контролем психофизиологических показателей детей, занимающихся сумо носит фрагментарный характер. В большинстве публикаций раскрыты вопросы истории японской борьбы сумо [2, 5, 14, 17], охарактеризованы основные теоретические вопросы классификации техники и тактики [15, 20], организационно-институциональные основы этого вида спорта, турнирная и тренировочная практика, церемониально-ритуальные аспекты [5, 17, 20], обобщены аспекты, связанные с организацией учебнотренировочного процесса, построения тренировочных занятий [2].

Кроме того, установлено, что различные по направленности тренировочные нагрузки задействуют различные механизмы в организме спортсмена [3, 11, 18]. Соответственно выполнение таких различных нагрузок связано с различными показателями психофизиологических изменений [3, 9, 10, 18].

В настоящее время в спортивной научно-методической литературе интерес к построению тренировки юных спортсменов значительно вырос. В своих работах, В. Алабин, Т. Круцевич, В. Филин исследовали влияние физических нагрузок на особенности адаптации юных спортсменов [1, 7, 8, 19]. Однако их работы не снимают противоречий, которые последние годы обостряются между потребностью в показании высоких результатов и недостатком разработанности в области спортивной подготовки юных спортсменов.

Имеющийся в теории и методике сумо недостаток информации, относительно данной проблемы, определяет актуальность нашего исследования. Изложенное выше послужило основанием для формулирования **цели исследования** — выявить систему оценки показателей психофизиологических качеств детей, занимающихся сумо.

Методы исследования.

Контроль и оценка психофизиологических качеств оценивается с помощью программы «Психодиагностика», которая разработана профессором Макаренко Н. В., модернизирована Козиной Ж. Л. и предназначена для определения индивидуально — типологических свойств нервной системы и сенсомоторных функций человека по переработке зрительной информации разной степени тяжести [6, 10].

Результаты исследования.

В период исследования, у детей младшего школьного возраста с помощью программы «Психодиагностика» были выявлены показатели, отражающие уровень индивидуально — типологических свойств высшей нервной деятельности и сенсомоторных функций (психофизиологических показателей). Каждый ребенок проходил тест по три раза, из которых фиксировали наилучший результат. Такой подход обоснован рядом

исследований профессора Макаренко Н. В., а для объективной оценки – учитывался лучший показатель из трех попыток [9, 10].

1 приведены результаты исследования показателей индивидуально - типологических свойств высшей нервной деятельности и сенсомоторных функций сумоистов. В тестировании приняли участие 16 детей Определение психофизиологических младшего школьного возраста. показателей всех респондентов производилось на базе МБУ ДО ЦДТ «Металлург» г.о. Самара. Исследования проводились в спортивном зале подросткового клуба по месту жительства «Олимпиец». При этом следует отметить, что у многих участников эксперимента был зафиксирован достаточно низкий уровень психофизиологических показателей.

В данной программе реализовано 3 основных режима, а так же тренировочные режимы. Основные режимы делятся на: оптимальные, обратной связи и навязанного ритма. В свою очередь, каждый из этих режимов состоит из нескольких подрежимов, с различием в проведении тестирования.

Технические характеристики режимов тестирования:

Оптимальный режим

ПЗМР – простая зрительно-моторная реакция;

PB1-3 — реакция выбора одного сигнала из трёх — характеризуется определением сложной зрительно-моторной реакции, в условиях выбора одного из трех предъявляемых сигналов с помощью реакции руки на определённый раздражитель.

PB2-3 — реакция выбора двух сигналов из трёх — характеризуется определением сложной зрительно-моторной реакции, в условиях выбора двух из трех предъявляемых сигналов с помощью реакции руки на определённый раздражитель.

Длительность экспозиции (сигнала) – 700, 900, 1200, 1500 мс; Пауза между предъявлениями сигналов – в диапазоне от 500 до 1900 мс, определения периода происходит случайным образом.

Режим обратной связи.

УФП НП – определение уровня функциональной подвижности нервных процессов – проводится в режиме обратной связи, когда длительность экспозиции изменяется автоматически в зависимости от ответных реакций испытуемого: после правильного ответа длительность следующего сигнала уменьшается на 20 мс, а после неправильного – увеличивается на ту же величину. Диапазон изменения экспозиции сигнала при работе испытуемого находится в пределах 20-900 мс с паузой между экспозициями в 200 мс. Правильным ответом считается нажатие левой (правой) кнопки мыши во время отображения определенной экспозиции (изображения), либо в период паузы после текущей экспозиции.

 $CH\Pi$ — определение силы нервных процессов — производится как и определение УФП, с разницей в установлении конечного времени выполнения теста. Длительность начальной экспозиции — 900 мс;

Величина изменения длительности сигналов при правильных или ошибочных ответах — 20 мс; Пауза между предъявлениями сигналов — 200 мс; Число сигналов — 120. Продолжительность теста (для подрежима СНП) — 5 мин.;

Режим навязанного ритма.

ФП (уровень функциональной подвижности нервных процессов) и СНП (сила нервных процессов) – в данном случае определение проводится в режиме ступенчато увеличивающейся скорости отображения экспозиций. Начальный темп отображения составляет 20 (30) раздражителей в одну минуту. Отображение изображений в каждом сеансе тестирования происходит с постоянной скоростью, а их выбор осуществляется случайным образом. Каждый последующий вызов теста автоматически увеличивает темп отображения изображений на 5 или 10 сигналов в минуту, составляя соответственно 35, 40, 45 ...150 или 30, 40, 50 ...150 изображений в минуту.

Начальная скорость экспонирования: для подрежима «УФП и СНП» – 20, 30 сигн/мин; Приращение скорости: для подрежима «Тренировка» – 5, 10, 20 сигн/мин; для подрежима «Тренировка» – 30, 50, 70, 90, 110 сигн/мин; для подрежима «УФП и СНП» – 5, 10 сигн/мин; Пауза между предъявлениями сигналов – 200 мс; Длительность выполнения теста – 30, 60 с [4].

Дальнейшими исследованиями планируется определение изменений в показателях психофизиологических качеств детей, занимающихся сумо различной квалификации при выполнении тренировочных нагрузок разной направленности.

Выводы:

- 1. Выявлено, что с помощью программы «Психодиагностика» можно определять показатели отражающие уровень индивидуально типологических свойств высшей нервной деятельности и сенсомоторных функций (психофизиологических показателей).
- 2. Определено, что программа «Психодиагностика» помогает контролировать и прослеживать динамику изменения психофизиологического состояния организма ребенка, занимающегося сумо.
- 3. Полученные сведения могут являться полезными в оценке степени воздействия на организм спортсмена тренировочной нагрузки разной направленности. Так же, учитывать полученные показатели в планировании тренировочных нагрузок. Кроме того, это система тестирования, которая может быть использована для профориентации и профотбора, а так же оценки функционального состояния организма в условиях воздействия на него различных факторов внешней и внутренней среды.

Литература

1. Алабин В. Г. Комплексный контроль в спорте / В. Г. Алабин // Теория и практика физической культуры. - 1995. - № 3. - С. 43-46.

- 2. Арзютов Г. Н. Сумо: История. Теория. Практика./ Под ред. проф. Арзютова Г. Н. Луганск: «Элтон-2», 2008. –165 с.
- 3. Годик М.А., Бальсевич В.К., Тимошкин В.Н. Система общеевропейских тестов для оценки физического состояния человека // Теория и практика физ. культуры. 1994. -№ 5-6. С. 24-31.
- 4. Гимнастика: Учеб. для студ. высш. пед. учеб. Заведений / Г484 М. Л. Журавин, О. В. Загрядская, Н. В. Казакевич и др.; Под ред. М. Л. Журавина, Н. К. Меньшикова. 2-е изд., стер. М.: Издательский центр «Академия», 2002. 448 с.
- 5. Иванов О. Сумо: живые традиции древней Японии / О. Иванов. Пермь: Агентство «Стиль-МГ», 2004. 288 с.
- 6. Козіна Ж.Л., Барибіна Л.М., Міщенко Д.І., Цикунов О.А., Козін О.В. Программа «Психодиагностика» как средство определения психофизиологических особенностей и функционального состояния в физическом воспитании студентов // Физическое воспитание студентов // научный журнал. Харьков, ХООНОКУ-ХГАДИ, 2011. С. 56-60.
- 7. Круцевич Т. Ю. Методы исследования индивидуального здоровья детей и подростков в процессе физического воспитания: учеб. пособие для студ. вузов физ. воспитания и спорта / Т. Ю. Круцевич. К.: 1999. 232 с.
- 8. Круцевич Т. Ю. Теория и методика физического воспитания: учебник для студ. вузов физ. воспитания и спорта: В 2 т. / ред. Т. Ю. Круцевич. К. : Олимпийская литература, 2003.—424с.
- 9. Макаренко Н.В. Методика оценки основных свойств высшей нервной деятельности человека. В кн.: Нейрокибернетика и проблемы биоэлектрического управления / Н.В.Макаренко, В.В.Сиротский, В.А.Трошихин / К., 1975. С. 41-49.
- 10. Макаренко Н.В. Методика проведення обстежень та оцінки індивідуальних нейродинамічних властивостей вищої нервової діяльності людини / Н.В.Макаренко// Фізіологічний журнал.—1999.—т.45, №.4—С.125—131".
- 11. Максименко Г.Н. О критериях оценки интенсивности тренировочных нагрузок у специализирующихся по спортивным играм / Г.Н.Максименко и др. // Теория и практика физ. культуры. 1978. № 9. С. 12 15.
- 12. Максименко И.Г. Планирование и контроль тренировочного процесса в спортивных играх. / И.Г. Максименко / Луганск: Знание, 2000.-276 с.
- 13. Маслов А. А. Энциклопедия восточных боевых искусств: т. 2: Воины и мудрецы страны Восходящего солнца. / А. А. Маслов М.: ГАЛА ПРЕСС, 2000.-424~c.
- 14. Милковский Ежи. Искусство спортивной борьбы Японии / Ежи Милковский Минск: Полымя, 1991. 174 с.
- 15. Морачёва Л. М. Основы сумо / Л. М. Морачёва, С. В. Праотцев, А. Е. Цвиров. М.: Япония сегодня, 2001. 77 с.

- 16. Ложечка М. В. Теоретико-методические основы контроля детей младшего школьного возраста в процессе занятий сумо/ М. В. Ложечка // Олимпийский спорт, физическая культура, здоровье нации в современных условиях. Материалы X международной научно-практической конференции. Часть первая Луганск, 2013. С.198-205.
 - 17. Праотцев С.В. Сумо мифы и реальность / С.В. Праотцев, А.Е. Цвиров. -М.: Известия, 2000. 281 с
 - 18. Платонов В. Н. Система подготовки спортсменов в олимпийском спорте. Общая теория и ее практические приложения / В. Н. Платонов/ К.: Олимпийская литература, 2004. 808 с.
 - 19. Филин В. П. Спортивная подготовка как многолетний процесс // Современная система спортивной подготовки / В.П.Филин / М.: CAAM,1995.- С. 351-389.
 - 20. Холл М. Большая книга сумо: история, практика, ритуал, бой. / М. Холл. Ростов н/Д.: Феникс, 2006. 160 с.

Показатели индивидуально – типологических свойств высшей нервной деятельности и сенсомоторных функций сумоистов

Психофизиологические функции		
Подрежим работы	Регистрируемые параметры	(n=16)
Простая зрительно- моторная реакция	1) средняя величина латентного периода (M), мс	649,6
	2) среднеквадратическая величина отклонения (σ), мс	2,67
	3) количество ошибок	4,6
Реакция выбора одного сигнала из трёх	1) средняя величина латентного периода (M), мс	583,6
	2) среднеквадратическая величина отклонения (σ), мс	4,48
	3) количество ошибок	3,8
Реакция выбора двух сигналов из трёх	1) средняя величина латентного периода (M), мс	724,4
	2) среднеквадратическая величина отклонения (σ), мс	3,78
	3) количество ошибок	5,2
Уровень функциональной подвижности нервных процессов (режим обратной связи)	1) средняя величина латентного периода (M), мс	526,6
	2) среднеквадратическая величина отклонения (σ), мс	3,68
	3) количество ошибок	26,4
	4) время выполнения теста, с	110,6
	5) минимальное время экспозиции, мс;	584,2
	6) время выхода на минимальную экспозицию, с	89,4
Сила нервных процессов (режим обратной связи)	1) средняя величина латентного периода (M), мс	538,6
	2) среднеквадратическая величина отклонения (σ), мс	4,53
	3) количество ошибок	120,6
	4) время выполнения теста, с	294
	5) минимальное время экспозиции, мс;	542,6
	6) время выхода на минимальную экспозицию, с	224,2